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SUMMARY

A system of partial differential equations of motion for a steadily rotat-
ing circular ring is derived. The ring is homogeneous with cross-sectional
dimensions which are small relative to the overall diameter. Small deflections
from the steady-state condition are assumed so that the equations of motion are
linear.

Four sets of structural modes are examined. The torsional modes consist
of rotations about the line of centroids of the cross section with small deflec-
tions perpendicular to the plane of the ring. The out-of-plane bending modes
consist of deflections perpendicular to the plane of the ring accompanied by
rotations about the line of centroids. The in-plane bending modes consist of
radial deflections with small tangential motions. The compression modes con-
sist of stretching and compression of the line of centroids with small radial
deflections.

For each mode, the motions are written as sinusoidal functions of time and
position around the circumference of the ring. Several low-numbered modes are
shown to be rigid body motions which agree with commonly known results of rigid
body mechanics. Formulas for the frequencies of vibration and the ratios
between different perturbation variables are derived. In many cases the for-
mulas are simplified. For example, for low spin rates the frequencies of vibra-
tion of the bending modes approach the frequencies for a linear beam. At high
spin rates, these frequencies approach the frequencies for a string under
tension.

Several figures are used to demonstrate the spatial and temporal charac-
teristics of the structural modes. The derived formulas are applied to an
example problem. The results of the example are plotted to illustrate the
effects of spin rate and mode number upon the frequencies of vibration and
other parameters which quantify the vibrational characteristics of the spinning
ring.

INTRODUCTION

Attitude control of spacecraft is accomplished by generating torques,
either externally as may be done by small rocket thrusters or internally by
stored momentum control devices. One example of a stored momentum control
device is the control moment gyro (CMG). (See ref. 1.) The CMG consists of a
momentum wheel which is supported in a gimbal system. Torques applied to the
support bearings of the wheel cause it to precess. The precession is used to
change the spacecraft attitude. In reference 1, three CMG's are arranged so
that the nominal spin axis of each CMG is aligned with one of the spacecraft
axes. Another example of a stored momentum control device is the so-called
scissors gyro concept described in references 2 and 3. 1In this approach, two



momentum wheels are arranged so that their nominal spin axes coincide but their
spin directions are opposite. Precession of these wheels in opposite directions
results in a net transfer of angular momentum to the spacecraft.

The effectiveness of a momentum wheel in a given application depends on
the amount of angular momentum which can be produced about its spin axis. The
moment of inertia of the wheel and its operating spin rate determine the angu-
lar momentum. In general, devices which are to be placed in spacecraft are
designed with the least possible mass so that required launch system capabili-
ties are minimized. Meeting the inertia requirement of a momentum wheel while
minimizing its mass leads to the annular momentum control device (AMCD). (See
ref. 4.) The AMCD consists of a ring (annulus) which is supported by noncon-
tacting magnetic bearings and is spun by a noncontacting electromagnetic motor.
For large precessions, the ring and its magnetic bearing assembly can be
rotated in a gimbal system. Small accurate precessions may be obtained by
varying the magnetic forces in the bearings. An advantage of the AMCD concept
over conventional shaft-mounted momentum wheels is that the mass of the center
portion of the wheel is eliminated with a relatively small reduction in the
moment of inertia.

With the possibility of future spacecraft being gigantic, AMCD's of very
large dimensions can be envisioned. As AMCD's increase in overall diameter and
decrease in cross-—sectional area, their flexibility increases. Thus, structural
modes in the device must be considered in the design.

Several analyses of structural vibrations occurring in rotating systems are
in the literature. For example, reference 5 examines the flexural vibrations of
rotating shafts with various loads, support methods, and unbalance conditions.
This work treats high-speed rotary systems in which the shafts rotate at speeds
in excess of their critical speeds. When the rotational period approaches the
period of transverse flexure modes of the shaft, divergent oscillations occur
and cause severe bearing vibrations and possible structural failure. A second
type of instability occurring in rotating systems is discussed in reference 6.
This work analyzes a self-excited oscillatory helicopter rotor instability.

This potentially dangerous phenomenon was shown to be caused by a conversion of
the rotational energy of the rotor into oscillatory energy of the blades. Both
of the above types of instability can be present in centrifuges. Reference 7
examines the stability characteristics of a centrifuge which is mounted in a
large spacecraft. The shaft critical-speed instability arises because the mass
of the centrifuge is concentrated along the arm connecting the gondala and
counterbalance with the hub. The second oscillatory instability is associated
with flexure of the arm and movement of the hub. The speed ranges within which
these instabilities occur can be adjusted by altering the mass distribution,
stiffness properties, and damping characteristics of the centrifuge.

Circular rings and arches have long been employed in construction (build-
ings, aqueducts, bridges, etc.) and in cylindrical vessel designs (tanks, pipe-
lines, aircraft, etc.). The strength, rigidity, and possibility of buckling
are considerations in these designs. Calculated static stresses, deflections,
and elastic stability characteristics of circular rings and arches with various
loading conditions can be found in reference 8. A brief analysis of the



stresses within a steadily rotating hollow disk can be found in reference 9.
This work does not include vibrations or structural modes.

An early analysis of the vibrations of a circular ring can be found in

reference 10. This analysis considers a slender ring which has a circular
cross section, is not spinning, and has no external influences (forces) acting
upon it. The linear analysis produces formulas for the frequencies of oscilla-

tion for flexural vibrations in the plane of the ring, flexural vibrations per-
pendicular to the plane of the ring, and extensional vibrations along the line
of centroids of the ring. Reference 11 examines the forced response character-
istics of the flexural vibrations perpendicular to the plane of the ring.
Forcing terms are added to the analysis of reference 10 and generalized coordi-
nates are used in developing the response of the vibrational modes to externally
applied forces. A corresponding analysis of the forced response characteristics
of the flexural vibrations and the extensional vibrations in the plane of the
ring is also developed in reference 11. The analysis of the flexural vibrations
is validated by a physical experiment. A nonlinear analysis of the flexural
vibrations in the plane of the ring is developed in reference 12. Nonlinear
resonance curves which demonstrate a nonlinearity of the softening type are
developed. The analysis is supported by physical experiment. An analysis of
the forced vibrations of a ring which is spinning is presented in reference 13.
The linearized structural mode dynamics are developed in terms of generalized
coordinates by means of Lagrange's equations. This work considers a thin,
flexible ring with flexural and extensional vibrations in the plane of the ring
and flexural vibrations perpendicular to the plane of the ring.

The present paper derives linearized equations of motion of a spinning
circular ring by application of Newton's law and Euler's equation following the
method of reference 14. The resulting set of linear partial differential equa-
tions describe the small-amplitude dynamics of the flexural and extensional
motions in the plane of the ring, the flexural motions perpendicular to the
plane of the ring, and the twisting motions about the centroid of the ring.

The vibration frequencies and modal characteristics of the freely vibrating
ring are examined in detail with emphasis on physical interpretation of the
mathematical results.

The equations of motion are developed in appendix A. These equations are
examined in the main text. The individual vibration modes are identified and
simple expressions for their characteristic properties (for example, vibration
frequencies) are derived. The spatial and temporal characteristics of each
vibration mode are illustrated in several figures. Formulas developed in this
paper are applied to an example ring and numerical results are presented.

SYMBOLS
A area of ring cross section, m2
Aj’Bj’cj""'Hj modal amplitudes of homogeneous sélutions of wave equations
Cp ratio between amplitudes of twist angle and out-of-plane deflection,
rad/m

Iy



E modulus of elasticity, Pa

Eqg nondimensional constant equal to EI,/GJ

81,§2,83 unit direction vectors of curvilinear coordinate system

gr’ge’gz unit direction vectors of cylindrical coordinate system

F force vector acting on cross section

Fl,F2,F3 components of F in curvilinear coordinate system

G shear modulus, Pa

Gp ratio between amplitudes of tangential perturbation and radial pertur—
bation, nondimensional

Ip polar moment of inertia of ring cross section, m4

Ir’Iz area moments of inertia of ring cross section, m

E,E,i unit direction vectors of inertial coordinate system

J torsional constant of ring cross section, m?

3 mode number

M moment vector acting on cross section

M, My Mg components of M in curvilinear coordinate system

R radius of unstressed ring, m

AR radius change caused by centrifugal force

R radius change caused by a small increment in spin rate

Ec location of ring centroid in inertial space

;f location of ring fiber in inertial space

Sg nondimensional constant equal to \'J/AR2

Sp nondimensional constant equal to JIP/AR2

Sy nondimensional constant equal to ,/Ir/AR2

S, nondimensional constant equal to \/IZ/AR2

s arc length from reference point on ring to any other point on ring



TarTps T -

Emax

8,6,y
6,0,

eP'd)P

.. polynomial coefficients
time, sec
radial perturbation variable, m
in-plane nodal frequency, rad/sec
tangential perturbation variable, m
in-plane nodal velocity, m/sec
velocity of transverse sound waves, equal to 45751 m/sec
velocity of longitudinal sound waves, equal to JE75, m/sec
externally applied control force density, N/m

components of W in curvilinear coordinate system
out-of-plane deflection perturbation variable, m
inertial coordinate axes
components of displacement for rigid body translation modes
components of velocity for rigid body translation modes
radial location of fiber with respect to centroid
radial location of the innermost fiber with respect to centroid
axial location of fiber with respect to centroid
angle-of-twist perturbation variable, rad
shearing strain, nondimensional
strain, nondimensional
maximum strain occurring among fibers caused by centrifugal force
strain of line of centroids caused by centrifugal force
angular components for rigid body rotation modes, rad
angular rate components for rigid body rotation modes, rad/sec
angular components for rigid body precession modes, rad

tangential distance from X-axis to fixed observation point



mass density of unstressed ring, kg/m3

stress, Pa

maximum allowable stress, Pa

maximum stress occurring among fibers caused by centrifugal force, Pa
shearing stress, Pa

spin rate of ring, rad/sec

spin rate required to produce the maximum allowable stress 0, rad/sec
limiting spin rate for static stability, rad/sec

frequency of oscillation, rad/sec

velocity of transverse sound waves divided by the radius of the ring,
rad/sec

velocity of longitudinal sound waves divided by the radius of the
ring, rad/sec

Subscripts:

B

C

in-plane bending mode
in-plane compression mode
out-of-plane bending mode
mode number

progressive wave
regressive wave

relative to inertial space
torsional mode

in-plane mode

out-of-plane mode



Special symbols:

A dot over a variable (e.g., V) denotes differentiation with respect to
time.

A prime after a variable (e.g., V') denotes a spatial derivative with
respect to s.

Vertical bars enclosing a vector quantity (e.g., lfc|) denote the length
of the vector.
EQUATIONS OF MOTION
The linearized equations of motion for a steadily rotating slender ring
are derived in appendix A. The properties of the ring and the assumptions used
in the derivation are as follows:

1. The ring is circular and has a uniform cross section.

2. One principal axis of the cross section is parallel to the spin axis.
The other principal axis lies in the plane of the ring.

3. The ring is rotating about its axis at a constant rate.

4. Perturbations of the ring from its steady state are small so that pro-
ducts of the perturbation variables with each other may be neglected.

5. Externally applied forces are small so that products of these forces
with the perturbation variables may be neglected.

6. The stress-strain relationships of the material of the ring are linear.
7. The damping of the material of the ring is negligible.

8. Deformations caused by transverse shear are ignored.

9. Rotary inertia termszare included.

10. The relative change in the radius of the ring caused by its steady
rotation is small.

11. The rate of rotation is small relative to the speed of sound traveling
around the circumference of the ring.

The small-perturbation equations of motion derived in appendix A
(egs. (A54) to (A57)) are



where

W
§- 20 - Q%u = 5% - wg?s,2 (RMum™ + 2R%u" + w) - w?(RV' + u)

+ Q2(R%u" - Rv') + §,2(RZU" ~ RV') (1)
. ) . .
v + 20u = oA + ws2(Ru' + R%v") + Q2Ru' + Szz(Ru' - V) (2)
. _ W3 2e 2 10l 3am 20 2 1n20 3
w=a—ws S,° (REw" - RZB™) + W, S 3% (R°W" + RZB™)

+ O°R%w" + Sr2R2 (w" - 20B' - Q2w") (3)

sz(é + QV'VI) + (Sr2 - SZZ>Q(V'J' — QB) — wrZSJz(R2B" + RW")

+ w2 (Rw" - B) (4)

s
2 is spin rate.

R is the radius of the unstressed ring.

A is the area of the ring cross section.

0 1is the mass density of the unstressed ring.

u is a small-perturbation displacement in the radial direction.

v is a small-perturbation displacement in the tangential direction.

w 1s a small-perturbation displacement perpendicular to the plane of the
ring.

B is the small-perturbation angle of rotation about the line of centroids.

Wy, W2, and W5 are external distributed force densities (force per unit
length) acting in the radial direction, tangential direction, and per-
pendicular to the plane of the ring, respectively.

u, Vv, w, Wl’ W2, and W3 are functions of s and t.
t 1is time.

s 1is the arc length from a reference point on the ring to any other point
on the ring.



A dot over a variable denotes differentiation with respect to time.

A prime after a variable denotes a spatial derivative with respect to s.

The constants appearing in equations (1) through (4) are defined as follows:

where

More

E

wg = [ (5)
OR
G

Wy = | (6)
Y OR2
J

sy = |- (7)
aRr?
T
P

S, = [|—= (8)
P AR2
T
Y

s, = | |—= (9)
o AR
IZ

s, = > (10)
AR

E 1is the modulus of elasticity.
G 1is the shear modulus.
I is the polar moment of the ring cross section.

p

J 1is the torsional constant of the cross section.

I, and I, are the area moments of inertia of the cross section with
respect to the radial direction and the spin axis, respectively.

Wg 1is the speed of propagation of longitudinal sound waves divided by the
radius of the ring.

wy 1is the speed of propagation of transverse sound waves divided by the
radius of the ring.

SJ, Sp, Sr' and Sz are analogous to the inverse of the slenderness

ratio used in the design of columns.

specific information concerning the definition of the variables and con-

stants used above may be found in appendix A.
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STATIC STABILITY

This section examines the possibility of a static instability occurring in
the spinning ring. Given an increase in the radius of the ring AR, if the
tension change required to balance the centrifugal force is greater than the
increase in tension caused by stretching, then the radius will grow without
bound. Given the unperturbed spinning ring, the tension caused by stretching
derived in appendix A is

I
Fp = EA|L1 + —i%-%§ (11)
AR

Also from appendix A (eqg. (A48)), the tension required to balance centrifugal
force is

Fy = pA(l + %)(RQ)Z (12)

The equilibrium strain in the ring is obtained by equating equations (11)

and (12):
2
e, = LR - (RO (13)
R B Iz 2
={1 + - (RfY)
p AR?,

The limiting spin rate {l;, below which the ring is statically stable and above
which the ring is unstable, is obtained by differentiating equations (11)
and (12) with respect to the change in radius and equating the results:

I
o =+ —E—(l + —Z—> (14)

Therefore, the instability occurs when the spin rate exceeds the speed of sound
in the material of the ring divided by the radius of the unstressed ring.

To determine whether this limiting spin rate would be achieved in practice,

the spin rate Qa required to produce the maximum allowable stress in the

material O, can be computed and compared with §07,- The maximum stress in the
steadily spinning ring is obtained from eguations (All) and (Al2) of appendix A:

Ee

O
Omax = E€ = — (15)
max max X in

R

10
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where the perturbation variables are all zero and Xmin 18 the radial distance
between the innermost fiber and the centroid and has a negative value. Substi-
tution of equation (13) into equation (15), letting the maximum strain equal the
allowable strain, and solving for the spin rate yield the maximum allowable spin
rate based on the maximum allowable strain and the dimensions of the ring:

Xmin

(o) I
A e
AR 1+ a<l+ m1n> -

For example, let the ring have a square cross section of dimension a on
each side with a < R/10. For this case,

T 2
5 =2 7 1£éo << 1 (17)
AR 12R
min _ a 1 ., (18)
R 2R 20

Also, consider the ring to be fabricated from steel for which (ref. 15)

g
3§ X 0.7 x 10°° << 1 (19)

Applying the approximations of equations (17), (18), and (19) to equation (16)
yields an approximate formula for the allowable spin rate based on the allowable
stress of the material:

fGa
— 20
5 (20)

Comparing equations (20) and (14),

Q ,o
a . a .
§£-~ 3 0.026 (21)

which implies that the ring would experience structural failure well before the

limit of equation (14). This result applies to all relatively rigid materials
for which E >> o,.

05 =

el

11



OUT-OF-PLANE HOMOGENEOUS SOLUTIONS

The out-of-plane vibration modes (deflection perpendicular to the plane of
the ring and twisting about its centroid) are examined in this section. The
equations of motion of the out-of-plane modes are given by equations (3)
and (4). In the absence of external influences (control forces and gravity),
the distributed force acting perpendicular to the plane of the ring W3 is
zero. Because of the geometry of the ring, the structural perturbation vari-
ables are periodic in the variable s, that is,

il

w(s + 2TR) w(s) (22)

I

B(s + 27TR) B(s) (23)

for all s. As in all wave equations, there is a family of solutions to equa-
tions (3) and (4) which satisfy the constraints of equations (22) and (23).
Assume that each mode has the solution

j s . is
w(s,t) = Aj cos (%; + wwjt) + Bj sin (%{-+ wwjt> (24)
is . Ijs
= C. == + . : = :
B(s,t) CJ cos <R mwjt) + DJ sin <I2 + wwjt> (25)

where the mode number J 1s a nonnegative integer and wwj is the vibration
frequency.

Substitution of equations (24) and (25) into equations (3) and (4) with
W3 = 0 yields the following algebraic equations:

2. 2 2 2(.2 2. 2 2\ .2,2
(l + 378, )wwj -3 (j Eg + 1)00r Sy~ - (l - S, )] 94

_ L2 2.2 _ .o 2
- [3 R(Eg + 1w, ?s;2 - 23RS, waj]cAj (26)

2 2 _ (.2 2o 2 2 _ o 2\a3
[sp W3 (j + Eglu,?s 2 + (5,2 - s, )Q]cAj

-3 26 2 _ 53 o2
= <l+EG)wrS 2 =8, %w, . (27)

12



where

AL B.
J J J

The constant Eg relates the out-of-plane bending stiffness to the torsional
stiffness, and CAj is the ratio between the amplitudes of the angle of rota-
tion of the cross section and the deflection of the centroid perpendicular to

the plane of the ring.

Solving equations (26) and (27) by eliminating CAj yields a polynomial

in the out-of-plane vibration frequency Wy 3

4 2 —
Tawwj - waWj + Tcwwj + Td =0
where
_ 2. 2 2
T, = (1+jsr>sp
_ 20 2 .4 2) -2( 20 2 4 2) 2¢ 2
Tb ‘Kl + 3 Sr + 3 Sp EG + J“l1 + 3 Sr Sp wr SJ
2 2 2 2 a 2
+[},Z—sr+3(sp+2sr):IQ
_ 443 2. 2a 2
T, = 437 (1 + Eg)S,“w, S50
Td =

52(5% - 1) 285 (0,%5,2 )7 + Jz[(jz g )1 - 5.2)
-4

+ (szG + 1)( 2 _ g Zﬂwrsz2Q2 + 5 ( ;2 - Srz)(l - sr2)Q4

The roots of equation (28) are the vibration frequencies of the out-of-plane
modes. The proportionality constants Cp: between the twist and the out-of-

(28)

plane deflection for each of these modes are obtained by substituting the values

of the frequencies into either equation (26) or (27).

The remainder of this section first examines the vibration characteristics

when the spin rate is zero. Then the modes with mode numbers of zero and one

with nonzero spin rate are examined. Finally, the vibration characteristics of

the higher numbered modes with nonzero spin rate are examined.

13
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Zero Spin Rate

If the spin rate § is zero, then equation (28) reduces to

4 _ 2 -
where
1, = (1 + 3%s5,.2)s,?
a r P
_ .2, 2 4.2 .2( .2, 2 2 2.2
Tb = [Kl + 3 S, +3 Sp )EG + 371 + 3 Sr + Sp i]wr SJ

. . 2 2

The two roots of equation (29) of greatest magnitude may be calculated by the
quadratic formula:

2 Tp 4TaTg
Wpy = 2T, 1+ J1 - sz (30)

Since the expression under the radical is never negative, the values of w5
are real. For slender rings, the values of S, and S are much less than
one. Consider the range of mode numbers Jj such that j25r2, jZS 2, and

jzspZEG are much less than one. For this range, equation (30) becomes

(j2 + Ec)wr (31)

Substitution of equation (31) into eguation (26) yields the ratio of the out-of-
plane deflection w(s,t) to the angle of twist R(s,t):

.2
-1 I j3°(1 + E.)
__ ___P *_.Hi (32)

3 +EG

Equations (31) and (32) describe the out-of-plane modes which consist primarily
of twisting motion about the line of centroids accompanied by a small deflection
perpendicular to the plane of the ring. An example of this type of mode is
illustrated in figure 1. In this case the deflection of the centroid and the
rotation about the centroid combine to produce rotation of the cross section

14



about a point which is near the outer edge of the ring. Therefore, the outer
surface appears to be relatively undistorted, while the inner surface shows a
large distortion.

The two roots of equation (29) of least magnitude may be calculated by the
quadratic formula:

. S (33)

For the range of mode numbers such that j25r2

and j25p2EG are much less
than one, equation (33) becomes

., .2
-1
wpy =+ HEZ . 50y (34)

j +EG

Substitution of equation (34) into equation (27) yields the ratio of the angle
of twist R(s,t) to the out-of-plane deflection w(s,t):

S (35)
AD] Ri1 + EG/j2

Equations (34) and (35) describe the out-of-plane modes which consist primarily
of deflection perpendicular to the plane of the ring accompanied by a small
twisting motion about the line of centroids. An example of this type of mode
is illustrated in figure 2.

For mode numbers within the range considered above but significantly
greater than JEG, equations (31), (32), (34), and (35) simplify to the
following:

b
-1 Ip
= —= +
Cary gt * Eg) (37)
w = +3%s_w (38)
Dj =1 =¢¥s

15



1
CADj = —E(l + EG) (39)

where j2 >> Eg-

Mode Number of Zero

If the mode number Jj is zero, then equation (28) becomes

- T W =0 (40)
where
Ty = sp2wg? + (sz2 _ Srz)Qz

The two nonzero roots of equation (40) correspond to a uniform rotation of
the ring about the line of centroids which has a frequency of oscillation of

Srzwsz + (522 _ Srz)QZ
-+ (41)
Wro L 2
p
The dynamics of this case may be written as
w(s,t) =0 (42)

1l

B(s,t) CTO COS Wppt + Dgg sin woyt

The frequency of this mode is affected by the spin rate. If I, > I,, then
the frequency increases with increasing spin rate and has a stiffening effect.
1f I, < I,, the frequency decreases.

Figure 3 illustrates this mode in a ring with a rectangular cross section.
The long axis of the cross section in figure 3(a) is nominally in the radial
direction. As the ring spins, the centrifugal force is greater on the outer
edge of the ring than on the inner edge. This produces a couple which tends to

force the ring back to its rest condition and thus stiffens the vibration mode.

The long axis of the cross section in figure 3(b) is nominally parallel to
the spin axis. In this case, the couple has an effect opposite to stiffening.

16
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The couple may overpower the elastic restoring forces if the frequencies given
by equation (41) become complex. This occurs when

Q> — (43)
Iz
1 - I
r
and I, >1I,. When these conditions are satisfied, the mode is dynamically

unstable. The lowest spin-rate limit imposed by equation (43) occurs when
I, = 0. For this case the limiting spin rate is wg which is identical to
that given by equation (14) for static stability.

For Jj = 0, the mode frequency given by equation (40) has a double solu-
tion of zero which implies a solution form different than equations (24)

and (25). The dynamics of this case may be written as
w(s,t) = z + zt (44)
B(Slt) - O

This solution is rigid body translation along the inertial z-direction which
nominally coincides with the axis of the ring @s is shown in figure 4. The
constant =z is the initial displacement and =z 1is the rate of displacement.

Mode Number of One

If the mode number Jj is one, then equation (28) becomes

Ta())wl4 - Tbu_)wlz + TCU‘)W]. + Td =0 (45)

where

H
il

2\ 2
a (1 + s, )sp

2

2 24 2 2 4y02
(1 + 8,2 + 25,.2) + muZs;? + 2(s,? + 5, %)0

3
i

2. 24 2
4(1 + EG)Sr w, S Q

2 2 2. 252 2 2 2\ o4
Tq = (1 +5,% - 28,.%)(1 + Bow, 5,707 + (s,2 - s, ) (2 - s.%)e

17
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Equation (45) can be factored into
- T 3 e 2 _m - m -
Q)(Tawwl * Tpy ToWy1 Td) 0 (46)

(wwl

where

~ 2\ 2
T, = (1+s, JENse
To = (1 + 25,2 + 5.2)(1 + Eg)uy’sy? + (1 - s.2)(s,? - sp2) 02

2502 + 5,2 )(1 + Egluy?Ss°0 + (1 - sr-’-)(sz2 - 5,2)93

=32
joR}

11
—
—
|

2

If the ring is very slender such that Sr2 and S, are very small relative

to unity, equation (46) may be factored into
2 2 2 2 2« 2 _ 2 _ 2\p2| _
(wwl -Q )[%p w2 - (1 + Exw, s, (sz s, )Q:} =0 (47)

Two of the roots of equation (47) correspond to the twisting mode which
has a frequency of oscillation of

2.2 2 2\n2

. (1 + Eg)Sy wrr f:KSZ .f.SF.)Q
Wpp = o2 (48)
P

Substituting equation (48) into equation (26) with J = 1, assuming that Sr2

and S,2 are very small relative to unity, and assuming that the spin rate is
much less than wy, yield the proportionality constant between the out-of-plane
deflection w(s,t) and the angle of twist [((s,t):

¢t £ (49)

which is small for slender rings. The spin rate has a small effect on the
frequency of this mode.

18



For the remaining roots of equation (47), two different cases may be con-
sidered. If the spin rate is zero, then the mode frequency has a double solu-
tion of zero. The dynamics of this case may be written as

i

w(s,t) R(B + Bt) cos ( > + R(p + é) sin

N
o0

> (50)

Wln

B(s,t)

i

-(0 + ét) cos (§> ~ (¢ + é) sin (%- (51)

S

This solution is a rigid body rotation of the ring about a line 1lying in the
XY-plane which nominally coincides with the plane of the ring, as shown in
figure 5. The constant © 1is the initial rotation angle about the Y-axis
and O is the rate of rotation about the Y-axis. The constant ¢ 1is the
initial rotation angle about the X-axis and ¢ is the rate of rotation about
the X-axis. These angles correspond to the pitch and roll angles of Eulerian
mechanics so long as their values are small.

If the spin rate is not zero, then the mode frequency has solutions equal
to plus and minus the spin rate. The dynamics of this case may be written as:

w(s,t) = RO cos (% + Qt> + R sin <§ + Qt) + Rep cos (% - Qt)
. s
+ ROy sin (E - Qt> (52)
B(s,t) = -0 cos <§ + Qt> - ¢ sin <§ + Qt) - 8, cos <§~— Qt>
= 9p sin (';SE - Qt) (53)

The first pair of terms of equations (52) and (53) correspond to a constant
inclination of the ring axis determined by the angles 6 and ¢ as shown in
figure 6. The second pair of terms of equations (52) and (53) describe a gyro-
scopic precession shown in figure 7. The initial orientation of the ring is
determined by a rotation about the Y-axis of angle Gp and a rotation about
the X-axis of angle ¢p'

Mode Numbers of Two and Greater
This section examines the vibration characteristics of the out-of-plane

modes for mode numbers of two and greater when the spin rate is substantially
less than wg and the ring is very slender so that the quantities j23r2,
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ATl | -

jzszz, and j4Sp2 are much less than unity. With these conditions, equa-
tion (28) can be approximated by

Tawwj4 - TpWwgy? + Ty * Tg = O (54)
where

T, = Sp°

= (17 rgJuls,?

T, = 4j3(1 + EG)erwr2sJ2Q

T4 = 32(32 - 1)2EG(wr28J2)2 + jz(j2 + EG>wrZSJ292

As described in appendix B, the solutions of equation (54) may be
expressed in the form

where
1 + E
. G
u .= 233 ——s %0 (56)
wJ .2 r
17+ Eg
) 2
2 _ .21 G2 - 1) 2.2 2
Wps® = 37 Ty STt + Q (57)
J + EG
2 _ (.2 J 2
Wpy 7 (3 + EG)I Wy (58)
P
Since the out-of-plane nodal frequency Uy is much smaller than the vibration

frequencies, Wp 5 and W5 s it is ignored in the following discussion. This
effectively ignores the presence of T, in equation (54}.

Equation (58) is the formula for the frequency of vibration of the out-of-

plane mode which consists primarily of twisting motion about the line of cen-
troids with small deflection perpendicular to the plane of the ring. The ratio
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of the out-of-plane deflection to the angle of twist is found by substituting
equation (58) into equation (26):

o1 Ip 32+ Eg)
C P e — (59)

The phase velocity relative to the rotating ring is obtained by multiply-
ing the modal fregquency (wTj/2ﬁ) by the wavelength (2TR/3j):

(60)

where v, 1is the velocity of transverse sound waves. The signs of equa-
tion (60) are chosen so that the velocities of the traveling waves which move
around the ring in the same direction as the spin rotation have positive
values. In this paper, these waves are called progressive. Those waves which
move in the opposite direction are called regressive. Since the velocities
given by equation (60) are much larger than the velocity of the ring R{, the
apparent frequency of oscillation and the phase velocity which would be
observed from inertial space are effectively the same as those given by equa-
tions (58) and (60).

Equation (57) is the formula for the frequency of vibration of the out-of-
plane mode which consists primarily of deflection perpendicular to the plane
of the ring with small rotation about the line of centroids. The ratio of the
angle of twist to the out-of-plane deflection is found by substituting equa-
tion (57) into equation (27):

12
3¢(1 + Egz)

a3 TR T en
J + EG

The phase velocity relative to the rotating ring is obtained by multiplying
the modal frequency by the wavelength:

.2 2
v =3 [ g2,2, g2 (62)
Dj .2 r s

J7 + EG

where Vg 1is the velocity of longitudinal sound waves.
The phase velocity relative to inertial space is obtained by adding the

nominal velocity of a point on the ring RQ +to the phase velocity relative to
the ring:
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.2 2
v =wroF |1 52,2, (gy)? (63)
SDJ .2 r 's

The apparent frequency of oscillation observed at a point fixed in inertial
space is obtained by dividing the apparent phase velocity by the wavelength:

Wans = =3|9 % (64)

SD3

For small rotation rates §, the modal frequencies and phase velocities
are determined mainly by the ring's material properties (E, G, and p) and
the geometric parameters (Ir, J, A, and R). For large rotation rates, the
modal frequencies and phase velocities approach the following values:

ij = Fif} (65)

Vpy = FRO (66)

oy = - S e )

Yspj ~ Srigﬁ j(.jzz - 1)2, ~239 (68)
j ot Eg

where §! 1is significantly larger than JS, Wwg.

The restoring forces caused by the tension in the ring are large in com-
parison to the restoring forces caused by material strain so that given a suf-
ficiently high rotation rate, the out-of-plane deflection modes of the ring
approach the solutions for a spinning loop of string (which has I, = 0).
Equation (66) shows that the phase velocities relative to the material approach
the linear velocity of the edge of the ring in both the progressive and regres-
sive waves. Equation (67) shows that the phase velocities relative to inertial
space approach a value twice the ring speed for the progressive wave and a very
slow velocity for the regressive wave.

The material of the ring has a velocity of Rfl. The progressive wave
travels around the ring in advance of the material at a total velocity of 2R§2
as shown in figure 8. The regressive wave shape is almost stationary in space
with a slight retrograde movement. To an observer, the material of the ring
would appear to be following a track which is almost fixed in space as shown
in figure 9.
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The following development examines the out-of-plane structural modes in a
more conventional manner than was done above. Application of trigonometric
identities to equations (24) and (25) yields the following alternative form for
the modal equations:

Il

w(s,t)

[e0]
ES A. cos is s w..t + B. cos JE-sin Wt
3 r °°° "pj j R Dj

j=
p . Js . ~ . s
+ C.: sin “— sin ijt + D. sin

3 R i cos ijt) (69)

o

o

[ve]
B(s,t) = 25 CAD]( . cos %f—cos ijt + j cos %?—sin ijt

. ' .
“ ]S s . 7
+ Cj sin R sin ijt + Dj sin == cos wD]t> (70)

where the modal frequencies Wp4 are given by equation (57) and the propor-
tionality constant between the twist angle and the out-of-plane deflection
Capj 1s given by equation (61) and where

(71)

Therefore, the out-of-plane structural modes may be represented as the sum of
products of sinusoidal functions of s (mode shapes) and sinusoidal functions
of time (oscillations). Since the mode shapes are a function of s only,
standing waves do not move with respect to the material of the ring; that is,
the nodes of the standing waves are fixed in the material.

Consider, for example, any one of the terms of equation (69):

- A s .
w(s,t) Ay cos R COs ijt (72)

Consider an observation point fixed in inertial space and located at a dis-
tance A along the circumference of the ring measured from the X-axis. The
deflection of the ring observed at this point is the deflection at

s = A - R{t (73)
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Substituting equation (73) into equation (72) yields the motion of an out-of-
plane standing wave relative to the inertial coordinate system:

w(s,t) = gj cos %(K - ROt) cos ijt (74)

In the limit for § = «, equation (65) may be substituted into equation (74).
Subsequent trigonometric manipulations yield the following representation for
the modal behavior of the ring at high spin rates as seen by a fixed observer:

A5 j j
w(A,t) = — |cos E—X + cos E{X - 2RQt) (75)

This equation consists of two terms. The first is a sinusoidal shape of the
ring which is fixed in time. The second is a sinusoidal shape which travels
around the ring at twice the rim speed. Figure 10 illustrates the motion of a
standing wave described by eqguation (75) as would be viewed by a fixed observer.
The ring achieves its maximum deflection in figures 10(a) and 10(g) with inter-
mediate positions in figures 10(b) through 10(f). The square symbol on these
figures identifies the reference point fixed in the ring at s = 0. Although
the crest and troughs (at maximum deflection) alternate when viewed relative to
a point which is fixed to the ring, they always occur at the same locations in
inertial space, as can be seen by comparing figures 10(a) and 10(g).

The analysis of this section has been limited to a range of mode numbers
for which the quantities jZSrZ, jzszz, j25p2, and j4Sp2 are much less than
unity. Since the effects of transverse shear upon the deformation of the ring
are neglected in the development of the equations of motion of appendix A, the
equations derived above may give inaccurate results for mode numbers beyond the
indicated range. However, for large mode numbers within the range, several of
the equations can be simplified to the following:

2

Wpy = £3 7 Wp (76)
P
I
-1 P
= —=(1 +
ary ~ ap‘t * Eg) (77)
J
VTj = ¥ 'f—‘ Vr (78)
P
- 4s [22a 22 2
Wpy = 3 Jj S, “w < + Q (79)
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1 + Eg

“ap; T TR (80)

- \[3%,20 2 + =2 (81)
Wgpj = —j(Q T \]j2sr2ws2 + Q2> (82)
vgpy = R ¥ \/j25r2vs2 + (RR)2 (83)

where j2 >> Eg-.

For high spin rates, equations (82) and (83) become

i3 2, 2
J Sr U')S .
.2 Sr § 52
VSDj = -3 —oRa +2R0 (85)

IN-PLANE HOMOGENEOUS SOLUTIONS

The characteristics of the in-plane vibration modes (deflections in the
radial and tangential directions) are examined in this section. The equations
of motion of the in-plane modes are given by equations (1) and (2). 1In the
absence of external influences (control forces and gravity), the distributed
forces acting in the plane of the ring, W; and W,, are zero. As in the
out-of-plane case, the structural perturbation variables are periodic in the
variable s, that is,

u(s + 27R) u(s) (86)

il

v{(s + 27TR) v (s) (87)

for all s. As in all wave equations, there is a family of solutions of equa-
tions (1) and (2) which satisfy the constraints of equations (86) and (87).
Assume that each mode has the solution

uj J

u((s,t) = E4 cos (JRE + W -t) + Fj sin <J§S— + wu-t> (88)
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= G, s 4oy . sin (35 1 0 .
vis,t) = GJ cos < = + wujt) + HJ sin < R + wujt> (89)
where the mode number Jj is a nonnegative integer.

Substitution of equations (88) and (89) into equations (1) and (2) yields
the following simultaneous algebraic equations:

Ejz - 1)2Sz2ous2 + msz + (j2 - l)Q2 - (1 + jzszz)muj2
= [;(wsz + Qz> - ZQwuj - jszzwujf}GFj (90)
Ezwsz - (1 + Szz)wuj%]GFj = j(wsz + Q2) - 20w,y - jszzmuj2 (91)
where
Spj = ;ﬁ =" :_j
J J

The constant Gps 1is the ratio between the amplitudes of tangential deflection
of the centroid and its radial deflection.

Solving equations (90) and (91) by eliminating GFj yields a polynomial

in the in-plane vibration frequency wuj:

4 _ 3 _ 2 _
Ty 5 Ty Toyy© + TqWyy + Te = O (92)
where
_ .2 2
Ta =1+ (3° + l)Sz
. . 2
o = (3 + 3902 + G2 + 1(w? - s,%02) + (2 + s,.2)G% - 1,22
— ps 2 2
Ty = 432(wg? + 02)
2 |,.2 2.2 4 .2 262 4
= - + - -
Ty 3 Ej 1) S, Wy (3 3)wS 9 EZ]
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The roots of equation (92) are the vibration frequencies of the in-plane modes.
The ratios of the amplitudes of the tangential and radial deflections for each
of these modes are obtained by substituting the values of the frequencies into
either equation (90) or (91).

The remainder of this section first examines the vibration characteristics
when the spin rate is zero. Then the modes with mode number egqual to zero and
one with nonzero spin rate are examined. Finally, the vibration characteristics
of the higher numbered modes with nonzero spin rate are examined.

Zero Spin Rate

If the spin rate § is zero, then equation (92) reduces to

TaWygj? = Tewy3? + Te = 0 (93)
where

T, =1+ (32 + s ?

T, = [jz + 1 (2 +5,2)52 - 1)2522]%2

T, = 32(32 - 1)2522w54

The two roots of equation (93) of greatest magnitude may be calculated by the
quadratic formula:

(94)

Since the expression under the radical is never negative, the values of Wey
are real. For slender rings, S, is much less than one. Consider the range

of mode numbers j such that 32822 is much less than one. For this range,
equation (94) becomes

Wog = £\[3% + 1 ug (95)

Substitution of equation (95) into equation (91) yields the ratio of the
tangential deflection v(s,t) to the radial deflection u(s,t):

Cpcy = -3 (96)
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Equations (95) and (96) describe the in-plane modes which consist primarily of
compression and stretching of the line of centroids with little bending. An
example of this type of mode is illustrated in figure 11.

The two roots of equation (93) of least magnitude may be calculated by the
quadratic formula

2 = e (97)

For the range of mode numbers such that jZSZ2 is much less than one, equa-

tion (97) becomes

S_w (98)

Substitution of equation (98) into equation (91) yvields the ratio of the radial
deflection u(s,t) to the tangential deflection v{s,t):

-1,
Cpey = (99)

Equations (98) and (99) describe the in-plane modes which consist primarily of
bending of the line of centroids with little compression and stretching. An
example of this type of mode is illustrated in figure 12.

For mode numbers within the range considered above but significantly

greater than one, equations (95) and (98) reduce to the following:

= Fjw (100}

Mode Number of Zero

If the mode number j is zero, then equation (92) becomes

w4 2 -0 (102)

a®uo T Tc¥uo
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where

=)
1

a (1 + Szz)

c=(1+ s,2) %02 + (3 - 5,%)0?

H
Il

For slender rings, the constant SZ2 may be ignored. The two nonzero roots of
equation (102) correspond to a radial oscillation of the ring with no bending
which has a frequency of oscillation of

— 2 2
Weg = + w < + 3Q (103)

Substitution of equation (103) into equation (91) yields the ratio of tangential
deflection to radial deflection:

28

G L —
FCO
ﬂws2 + 302

The relative magnitudes and phasing of the radial and tangential terms are such
that the angular momentum of the ring is constant.

(104)

The radial oscillation mode is illustrated in figure 13.  For this figure
the parameter Fpq (egq. (88)) is zero. Figure 13(a) shows the ring at its
initial condition (t = 0). The radius is increased by the amount Egp. The
tangential velocity of the ring is the sum of the nominal velocity, R, and
the time derivative of the variable v(s,t). Since the radius of the ring is
larger than the nominal radius at t = 0, the ring rotates at a speed less than
nominal. Figure 13(b) shows the ring after one-quarter cycle of oscillation
(t = T/2wcg). The radius of the ring equals the nominal radius and is decreas-
ing. Because the ring was rotating at a slower than nominal rate previously,
it has retarded by an amount GpcopEcg- This retardation is shown by the loca-
tion of the mass element at s = 0 (denoted by the dark square fixed to the
ring) relative to its nominal location (denoted by the light square). The ring
is now rotating at its nominal rate and is decelerating. Figure 13(c) shows
the ring after one-half cycle of oscillation . (t = W/wco). The radius of the
ring is now less than nominal by the amount Erg; the ring is rotating at a rate
which is greater than nominal and the previous retardation has been canceled.
Figure 13(d) shows the ring after three-quarters cycle of oscillation
(t = 3W/2wco). The radius of the ring is now equal to its nominal value; the
ring is rotating at its nominal rate and is decelerating. The indicated mass
element has progressed ahead of its nominal circumferential location.

The double root at zero in equation (102) implies a solution which is not

of the form of equations (88) and (89). For this case, the following form may
be used:
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R (105)

u(s, t)

P+ Pt (106)

v(s,t)

Substituting equations (105) and (106) into equations (1) and (2) yields

R = 20 o (107)

(l + Szz)ws2 - Q

Arbitrary value (108)

<
I

The parameter | specifies an arbitrary angular displacement of the ring about
its spin axis. The parameter Y specifies a constant increment in the spin
rate of the ring; that is, the actual spin rate is equal to & + &/R. The
parameter R is the change in the radius of the ring caused by the change in
centripetal force acting on the ring.

Mode Number of One

If the mode number Jj 1is one, then equation (92) may be written in the
factored form

(Wyy - 9)2[(1 + 2522)%12 + 2w, - (92 + 2@52):' =0 (109)

The roots of the quadratic term of equation (109) are

e \/92 + 1+ 25,2)(02 + 20,2

Cl 2
i+ ZSZ

(110)

w

Substitution of equation (110) in equation (91) yields the ratio of the tangen-
tial deflection to the radial deflection:

G = -1 (111)

Assuming_that the spin rate is substantially less than wg and that the param~

eter S, is much less than unity reduces equation (110) to

ey = 2 wg (112)
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This solution is a compression mode in which the ring maintains its circu-
lar shape but moves in such a way as to keep its center of mass fixed in space.

This mode for the negative value of equation (112) and Fgy (eg. (88)) equal
to zero is illustrated in figure 14. At time zero (fig. 1l4(a)), the shape of
the ring is shifted in the positive x-direction while most of the mass is dis-
placed in the negative x~direction. After one-half cycle of oscillation

(fig. 14(c)), the ring's shape has rotated counterclockwise to the negative
x-direction and the mass has accumulated in the positive x-direction. For the
positive value of equation (112), the motion is similar except that the ring's

shape rotates clockwise. The sum of these two modes produces the standing-wave

motion of figure 15 where the ring is oscillating from side to side. Fig-

ures 14 and 15 which illustrate this mode for zero spin rate are representative
of the motion of this mode for nonzero spin rate because the frequency of oscil-

lation of the mode is so much greater than §2.

The double root in equation (109) implies a solution which is not of the

form of equations (88) and (89). For this case, the following form may be
used:
u(s,t) = (x + xt) cos <§ + Qt) + (y + &t) sin <§-+ Qt) (113)
vis,t) = (y + yt) cos <§ + Qt) - (x + Xt) sin <§ + Qt) (114)

These solutions represent rigid body translations and rates in the plane of the

ring. They are illustrated in figure 16.

Mode Numbers of Two and Greater

This section examines the vibration characteristics of the in-plane modes
for mode numbers of two and greater when the spin rate is substantially less
than wg and the ring is very slender so that j2822 is much less than unity
In addition, assume that the roots of equation (92) are each much greater than
4jQSzz. With these assumptions, equation (92) can be approximated by

wuj4 - Tcu)uj2 + TqWwyy + Tg = 0 (115
where

T, = (32 + Lwg?

Tq = 4j§2w52

T, = 3° Ej2 - 1)2sz2ws2 + (3% - 302w ?

)
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As described in appendix B, the solutions of eguation (115) may be expressed in
the form

, = R . —y. * .
wuj uj + ij, uj + u)cj (116)
where
i+ 1
3% - 1) .2 2., 2 2
ij = — (3¢ + l)SZ wge + 9; (118)
je + 1

wey = \/j2 + 1 wg (119)

Define the values of wuj which are solutions of equation (115) as
follows:

Wgry ~ Wgg T Yy (120)
Wppy = "Wy * Uy (121)
Werpy = Yoy T Yy (122)
Wepy = “Weg T Yy (123)

Equations (120) and (121) with equations (117) and (118) are the formulas
for the frequencies of vibration of the in-plane modes which consist primarily
of bending of the line of centroids with little compression and stretching.
The ratios of the amplitudes of the tangential movement v(s,t) to the radial
deflection ul(s,t) are found by substituting equations (120) and (121) into
equation (91):

G =~§,— (124)

R (125)
j

where Gppgs and _GFBPj are the ratios corresponding to the frequencies WBRS
and wBPj' respectively.
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The phase velocities relative to the rotating ring are obtained by multi-
plying the modal frequencies (wBRj/zﬂ and wBPj/ZW) by the wavelength (27R/]j):

(32 - 1) J(j2 + 1)5,%v 2 + (R)2 + 2R

Vv , = - (]—26)
BRJ j2 + 1

(32 - 1) \/(jz +1)s %v 2 + (R)Z - 2R
Ve o= S L (127)
BPj 32 +1

where vg 1is the velocity of longitudinal sound waves. The signs of equa-
tions (126) and (127) are chosen so that the velocities of the traveling waves
which move around the ring in the same direction as the spin rotation (progres-—
sive waves) have positive values.

Consider the solution of equations (88) and (89) where F.; = 0, W,5 = Wgp5 -
and O << SyWg. Substitution of equation (121) into equations™ (88) and (89)
and using equations (117), (118), and (125) yield the following:
(s,t) = E IS . - ut (128)
uf(s, 3 cos [ B 3
Ey . is
vi(s,t) = i;-51n R (ij - uj)t (129)
where
uy = ng_ Q (130)
3° + 1
Ci2
wpy = P31l g (131)
i% 4+ 1

Equations (128) and (129) describe a sinusoidal traveling wave which progresses
ahead of the nominal material motion with the relative velocity

vBPj = VBj - vj (132)
where
)
_ 3= - 1)
VB T S S,V (133)
Jj¢ + 1
2
vy = RS (134)
37+ 1
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This mode consists mainly of bending of the line of centroids with little com-
pression and stretching. Since the spin rate is substantially less than S,Wg,
the vibration frequencies and phase velocities are primarily functions of the
geometric and material properties of the ring (E, p, A, I,, and R) and the
mode numbers. Figure 17 illustrates this mode for j = 2.

Similarly, consider the solution of equations (88) and (89) where Fj = 0,
Wy§ = Wpryj. and 2 << S,wg. Substitution of equation (120) into equations (88)
and (89) and using equations (117), (118), and (124) vyield the following:

u(s,t) = E5 cos [%§-+ (w4 * uj)é] (135)
By . [3s
vis,t) = T;-51n [ﬁ; + (ij + uj)é] (136)

where uj and ij are given by equations (130) and (131).
Equations (135) and (136) describe a sinusoidal traveling wave which
regresses behind the nominal material motion with the relative velocity

VBRj ij + Vj (137)

where Vg4 and vj are given by equations (133) and (134). Figure 18 shows

this mode for j = 2.

Since WBJ is substantially larger than the spin rate for mode numbers of
two and greater, the apparent phase velocities, vSBPj and VSBRj’ and the

apparent vibration frequencies, WsBpS and WgBRS # which would be seen by a

stationary observer are essentially equal to VBPjs VBRjs WBPj’ and WRR
respectively.

Given that the ring has both progressive and regressive in-plane bending
modes of equal amplitude, the resultant motion would have a standing-wave
character. Adding the two traveling waves described by equations (128), (129),
(135), and (136) and applying trigonometric identities yield the following
equations for the in-plane bending-mode standing waves:

u(s,t) = Ej cos (% + ujt> cos .t (138)
Ej . js )
v(s,t) =-3— sin (E? + ujt cos ijt (139)

where u. and ij are given by equations (130) and (131), Ej = 2Ej, and

2 << S Wg . Following the above analysis, using Ej = 0 vyields equations
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similar to equations (138) and (139) except for interchanges in the sine and
cosine operators. Therefore, the in-plane structural bending modes may be
represented by the sum of products of sinusoidal functions of time (oscilla-
tions) and sinusoidal functions of distance along the ring s and time (mode
shapes). Since the mode shapes are functions of time as well as s, the stand-
ing waves move with respect to the material of the ring. The nodes of the
standing waves may be said to move along the ring at some nodal velocity. The
nodal velocity of the bending standing waves is equal to v: (eq. (134)) in
the direction opposite to the rotation of the ring. In other words, the modes
regress at the velocity vy relative to the material. At time equal to zero,
the deformation variables as seen by a fixed observer can be plotted as shown in
the upper two curves of figure 19. The radial displacement u is greater than
the tangential displacement v by the factor 3Jj. After one-quarter cycle of
oscillation, the plots for both variables collapse to zero, corresponding to an
undeformed ring (not shown). After one-half cycle of oscillation (t = ﬂ/ij),
the variables u and v attain the plots shown in the lower two curves of
figure 19. The ring and the s coordinate system have moved by the amount
RQt. The nodes of the mode shape have lagged behind by an amount vsit. Fig-
ure 20 shows the ring with a bending-mode standing wave for Jj = 2. After one
full cycle of oscillation (t = 2W/wB-), the ring has rotated through an angle
of Qt and the structural mode shapé has lagged behind by an angle of (vj/R)t.

For higher spin rates, the character of the bending modes changes. The
above analysis considered low spin rates for which § << S,wg. The following
analysis examines higher spin rates for which Sjuwg << Q << wg. For this range
of spin rates, the above development applies except for the formulas for WR
and VB3 which become

_ 367 -1 g

T (140)
B
J j2 + 1
.2 _
vgy = 32—1 R (141)
i% + 1

where S,wg << § << wg. The frequencies and phase velocities of the bending
modes are now functions of the tension in the ring caused by centrifugal force.

The progressive bending-mode traveling wave described by equations (128)
and (129) for high spin rate and j = 2 1is illustrated in figure 21. This
figure is similar to the figure for low spin rate (fig. 17) except for the
speed of rotation of the ring's shape and the movement of the ring's material
relative to the ring's shape. For low spin rates, the ring's shape rotated at
a relatively slow rate which was significantly faster than the nominal rotation
rate of the ring. For high spin rates, the ring's shape rotates at a relatively
high rate which is at most twice as fast as the nominal rotation rate of the
ring. For 3j = 2 (shown in fig. 21), the relative phase velocity vppy 1is
fraction of the material velocity. The ring may thus appear to have a %ixed
distortion and to be rotating as a rigid body. This illusion diminishes with
increasing mode number.

a
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The regressive bending-mode traveling wave described by eguations

and (136) for high spin rate and j = 2 1is illustrated
figure is similar to figure 18 for low spin rate except
the wave shape relative to the material is equal to the
in the opposite direction. Therefore, the shape of the
and the material moves around this fixed contour.

The phase velocities of these modes relative to inertial space,

(135)
in figure 22. This
that now the speed of
speed of the material
ring is fixed in space

VSBPJ

and VSBRyjs are obtained by adding the nominal velocity of the ring R to

VBRI given by equa-

(142)

(143)

and wSBRj' observed from

(144)

(145)

the phase velocities relative to the ring, VBp3 and
tions (126) and (127):
2, 2
v . = _(2 — l)S_Z__\,i
SBrj T 1) 2RQ
-2
J< - 1
v = 2{—|RQ
SBP) <j2 + l)

The apparent fregquencies of oscillation, wSBPj
inertial space are obtained by dividing the apparent phase velocities by the
wavelength:

.2 Szzws2
Wgpry = 337 - Li=5n—
.2
DY i il 2 B
i+ 1

Given that the ring has both progressive and regressive in-plane bending
modes of equal amplitude and Sjwg << § << Wg, equations (138) and (139) apply

except that ij is given by equation (140).

Figure 23 shows the deformation

variable as seen by a fixed observer at time equal to zero and after one-half

cycle of oscillation.
oscillation is

T 32+ 1

t: =
i (3% - 1)

24

ij

The material of the ring has moved a distance equal to
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Using equation (140), the time for one~half cycle of

(146)

(147)



Using equation (134), the distance that the mode of the standing wave has
regressed relative to the material is

vit = ————— RT (148)

Subtracting equation (148) from (147) gives the spatial displacement of the
mode of the standing wave:

Rﬂt - Vjt=

.|

i (149)

which is equal to one-half of the wavelength of the structural deformation.
Therefore, the peaks and valleys of the structural vibrations occur at the same
locations in space and do not interchange as was the case for very low spin
rates shown in figure 19. Figure 24 shows the ring with a bending-mode stand-
ing wave for j = 2.

Equations (122) and (123) with equations (117) and (119) are the formulas
for the frequencies of vibration of the in-plane modes which consist primarily
of compression and stretching of the line of centroids with little bending.
The ratios of the amplitudes of the tangential movement v(s,t) to the radial
deflection u(s,t) are found by substituting equations (122) and (123) into
equation (91):

GFCRj = -3 (150)
Cpepy = 79I (151)

where GFCRj and ‘GFCPj are the ratios corresponding to the frequencies wCRj
and wCPj’ respectively.

The phase velocities relative to the rotating ring are obtained by multi-
plying the modal frequencies (wCRj/2ﬂ and wCPj/2ﬂ) by the wavelength (2mR/j):

1 Q
Vegs = "L ¥ 5 Ve * —551——- (152)
] 3 3% + 1
1 2R
VCPj = 1 + '—2 VS -+ 2—— (153)
Jj 37+ 1

Since these velocities are much larger than the velocity of the ring R{, the

apparent frequencies of oscillation, wSCPj and wSCRj’ and the apparent phase
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velocities, VSCPj and VSCRj’ that would be observed from inertial space are

effectively the same as those given by equations (122), (123), (152), and (153).

Consider the solution of equations (88) and (89) where Fs = 0,
wuj = wCPj’ and § << Wy - Substitution of equation (123) into equations (88)

and (89) and using equations (117), (119), and (151) yield the following:

js
= E. 2= o .+ u.
u(s,t) EJ cos [R (wC] uj)gl (154)
o sm. wio |3S._ . .
v(is,t) = jEj sin [R (ij + uj)%] (155)
where
ug = 2—23——9 (156)
37+ 1
B ) 7
oy T 3° + 1 ws (157)

Equations (154) and (155) describe a sinusoidal traveling wave which progresses
ahead of the nominal material motion with the relative velocity

Very T Vo3 t Yy (158)
where

N (159)

vCj = > Vg
3
2

vy = —=— RQ (160)

3%+ 1

This mode consists mainly of tension and compression distortions with very
little bending of the ring's material. The phase velocity is primarily a func-
tion of the material and geometric properties of the ring.

Similarly, consider the solution of equations (88) and (89) where Fj = 0,
wuj = mCRj' and § << W . Substitution of eguation (122) into equations (88)

and (89) and using equations (117), (119), and (150) yield the following:
u(s,t) = E is + (Wrs5 - ust) (16l)
' j °°% R ci T
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T Js R
v(s,t) = jEJ sin [R 4-(wCJ u]tﬂ (162)

where uy and wcj are given by equations (156) and (157). Equations (161)

and (162) describe a sinusoidal traveling wave which regresses behind the
nominal material motion with the relative velocity

Very T Vei T Y5 (163)

where ves and vy are given by equations (159) and (160).

Given that the ring has both progressive and regressive in-plane compres-
sion modes of equal amplitude, the resultant motion would have a standing-wave
character. Adding the two traveling waves described by equations (154), (155),
(161), and (162) and applving trigonometric identities yield the following equa-
tions for the compression-mode standing waves:

- B s _

u(s,t) = Ej cos (I{ ujt> cos wcjt (164)
(s,t) = El sin (ii - u t> CcoSs WAt (165)

v{s, : R i i

where uy and Wey are given by equations (156) and (157), Ej = 2E.;, and

2 << Wg-. Since the mode shapes are functions of time as well as s, the stand-

ing waves move with respect to the material of the ring. The nodal velocity of

the compression standing waves is equal to vy (eq. (160)) in the direction of

rotation of the ring. In other words, the modes progress at the velocity v

J
relative to the material.

At time equal to zero, the deformation variables as seen by a fixed
observer can be plotted as shown in the upper two curves of figure 25. The
tangential displacement v 1is greater than the radial displacement u by the
factor Jj. After one-quarter cycle of oscillation, the plots for both variables
collapse to zero, corresponding to an undeformed ring (not shown). After one-
half cycle of oscillation (t = W/wcj), the variables u and v attain the
plots shown in the lower two curves of figure 25. The ring and the s coordi-
nate system have moved by the amount RQt. The mode shape has moved an addi-
tional amount vjt. Figure 26 shows the ring which has a compression-mode
standing wave for Jj = 3. After one full cycle of oscillation (t = Zﬂ/wcj),
the ring has rotated through an angle of §{it and the structural mode shape has
moved through an additional angle of (vj/R)t.

The analysis of this section has been limited to a range of mode numbers

for which jZSZ2 is much less than unity. Since the effects of transverse
shear upon the deformation of the ring are neglected in the development of the
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equations of motion of appendix A, the equations derived above may give inaccu-
rate results for mode numbers beyond the indicated range. However, for large
mode numbers within the range, several of the equations can be simplified to

the following:

where

where

40
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uy = §~Q (166)
gy = 3 j2sz2w52 + Q2 (167)
Wy = g (168)
Vopg = _\,jzszzvsz ;‘?§Q)2 (169)
Vppy = j%s,%v 2 %kaQ{é (170)
VCRj = —vS (171)
Veps = Vg (172)

>> 1. For low spin rates, the formulas for the bending modes become

_ a2
wgy = 3780, (173)
vBRj = —jSZvS (174)
Vppy = 35,Vs (175)

j2 >> 1 and § << S,Wg. For higher spin rates, the formulas for the
bending modes become

wgy = 39 (176)
VBRy = -R{2 (177)
VBPj = R (178)



_22a 2 2
- _E_Eé;ﬁi_ (179)
VSBR] 2R
Vsppy = 2R (180)
220 2y 2
s = o2 0s” (181)
SBRY = T 20
Wgppy = =239 (182)

where j2 >> 1 and S wg << << wg.

EXAMPLE

Solutions for an example ring were computed using the formulas of the
previous sections. The example ring has a radius of 360 m and a 1l.4-cm-square
cross section. The mass density of the material is 1.8 g/cm3, Young's modulus
is 280 GPa, and the shearing modulus is 110 GPa. The other physical character-
istics of the ring are given in table T.

The highest spin rate considered for this example is 1 rad/sec. This
spin rate produces a steady-state strain of the line of centroids of
€5 = 8.338 X 1074 as computed by equation (13). The maximum steady-state
stress is Opax = 0.2335 GPa as computed by equation (15). The validity of
the approximations of equations (A50) through (A53) used in deriving the equa-
tions of motion in appendix A have been checked.

The out-of-plane frequencies, Uyyr  Wpys and Wpyjr were computed from

equation (28) using the procedure of appendix B. The nodal frequencies Ug5
are plotted in figure 27. The vibration frequencies of the torsional modes
W and of the out-of-plane deflection modes Wpy are plotted in figure 28.
The ratios of the out-of-plane deflection to the twist angle for the torsional
modes CgTj were computed by equation (26). The ratios of the twist angle to
the out-of-plane deflection for the deflection modes CADj were computed by
equation (27). These ratios for § = 1 rad/sec are plotted in figure 29. The
phase velocities for the out-of-plane modes are plotted in figures 30 and 31.

The in-plane frequencies, uy, ij, and Wy were computed from equa-

tion (115) using the procedure of appendix B. The nodal frequencies uy are

plotted in figure 32 and the vibration frequencies, we5 and wgj, are plotted
in figure 33. The ratios of the amplitudes of the tangential motions to the
amplitudes of the radial deflections were computed from equation (90) for com-
pression modes and from equation (91) for bending modes. These ratios for

2 = 1 rad/sec are plotted in figure 34. The nodal velocities for the in-plane
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modes are plotted in figure 35. The phase velocities for the in-plane vibra-
tion modes are plotted in figures 36 and 37. These velocities are relative to

the nodal velocities.

Note that the quantities plotted in figures 27 through 37 are functions of
only integer values of the mode number Jj. The curves have been faired to
improve their readability.

For the example problem being considered here, the out-of-plane nodal
frequencies uwj are small and do not significantly contribute to the solution
of the problem. The in-plane nodal frequencies substantially contribute to the
vibrational behavior of the ring for low-numbered modes.

The frequencies of the torsional modes W and the compression modes ij
are roughly proportional to mode number. Since the cross section of the ring is
square (Iz = I,), the frequencies of the torsional modes are independent of spin
rate. The phase velocities of the torsional modes vpy are approximately equal
to the speed of transverse sound waves in the material of the ring. The phase
velocities of the compression modes vey are approximately equal to the speed

of longitudinal sound waves.

The frequencies of the out~of-plane deflection modes Wp4 and of the
in-plane bending modes wgy are functions of both mode number and spin rate.
Given low spin rates or high mode numbers, the restoring moments caused by bend-
ing are larger than the restoring moments caused by tension in the ring. Under
these conditions, the ring vibrates much like a linear beam. The vibration
frequencies are proportional to mode number squared j2 and are independent of
spin rate. The phase velocities are proportional to mode number. For high spin
rates and low mode numbers, the restoring moments caused by tension dominate so
that the ring vibrates much like a flexible string held under tension. The
vibration frequencies are proportional to mode number and to spin rate. The
phase velocities approach the velocity of the ring Rl

The out-of-plane deflection w(s,t) and the twist angle f(s,t) vibrate
in phase. For the deflection mode, the ratio of the twist angle to the out-of-
plane deflection ranges from -1/R to ~-(1 + Eg)/R rad/m. For the torsional
mode, there is very little out-of-plane deflection.

The tangential movement v(s,t) and the radial deflection u(s,t) vibrate
in quadrature. For the in-plane bending mode, the ratio between the amplitudes
of the tangential movement and the radial deflection is approximately equal to
the inverse of the mode number. For the compression mode, this ratio is
approximately equal to the mode number.

CONCLUSIONS
Small-amplitude dynamics of a steadily rotating slender ring have been

examined. Derived were linear partial differential equations which describe
flexural and extensional motions in the plane of the ring (in-plane bending and
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compression modes), flexural motions perpendicular to the plane of the ring
(out-of-plane bending modes), and twisting motions about the centroid of the
ring cross section (torsional modes). The following conclusions were drawn
from the investigation:

1. A maximum spin rate, beyond which the ring is statically unstable, has
been found. Given an increase in the radius of the ring, if the tension change
required to balance the centrifugal force is greater than the increase in ten-
sion caused by stretching, then the radius will grow without bound. This
instability occurs when the spin rate approaches the speed of longitudinal sound
waves divided by the radius of the unstressed ring. For practical materials
such as steel, the ring will fail in tension well before this spin rate can be
achieved.

2. The spin rate can have an effect upon the vibration frequency of the
torsional modes. If the cross section is such that the axis of greatest moment
of inertia is parallel to the radius vector from the center of the ring, then
the torsional modes are stiffened by increases in spin rate. But, if the axis
of greatest moment of inertia is perpendicular to the radius vector, then the
torsional modes are softened by increases in spin rate. The torsional mode with
mode numbers of zero becomes dynamically unstable at a spin rate which is near
the limit for static stability.

3. The spin rate affects the nature of the bending modes of the ring.
Given low spin rates or high mode numbers, the ring behaves like a vibrating
beam. For high spin rates and low mode numbers, the ring vibrates like a
flexible string under tension.

4. Standing waves (mode shapes) move with respect to the ring. For the
out-of-plane modes, this nodal motion is insignificant. This motion is signifi-
cant for in-plane bending modes with low mode numbers.

5. Some modes of a spinning ring would appear to a fixed observer to be
surface movement along a fixed, warped, contour. Such modes might pose a prob-
lem in the design of an active control system because of difficulties in obtain-
ing the rates of change of the perturbation variables.

’

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 5, 1980
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APPENDIX A

N

DERIVATION OF EQUATIONS OF MOTION

The linearized equations of motion for a steadily rotating slender ring
are derived in this appendix. The deformations of the ring are defined by the
three-dimensional displacement of the centroid of the ring's cross section and
the angle of twist of the ring about the line of centroids. The stresses
within the ring and the linear and angular accelerations of each mass element
of the ring are derived as functions of the ring deformations. Deformations
caused by shear are not included in this development. Euler's equation and
Newton's law are used to obtain a linearized system of partial differential
equations which define the dynamics of the perturbation variables with respect
to time and location around the circumference of the ring.

Geometry of Ring

The geometry of the ring is shown in figure 38. The ring is a slender
piece of material formed into the shape of a hoop with radius R. The ring
lies in the plane of the X and Y inertial axes. Choose the point P, which
happens to be at the intersection of the ring with the X-axis, as a reference
point; then any point Q on the ring may be identified by the variable s which
is set egual to the length of the arc PQ. Given a steady spin rate §, the
wing expands to a new radius, R + AR. The angle between line OP and the X-axis
is equal to §t. Since the ring, being uniform, expands equally in all direc-
tions, the angle POQ does not change and the length of the arc PQ becomes
(1 + AR/R)s.

The displacement of the centroid of the ring caused by structural deforma-
tions is shown in figure 39. Given the perturbation variables u, v, and w,
the point Q moves a distance v along the arc of the undeformed ring to Qj,

a distance u along a radius to Q,, and a distance w parallel to the Z-axis

to Q3.

The vector which locates the point Q3 in inertial space may be written
as

- S A4 "
rc(s,t) = (R + AR + u) [COS <E + ET—A—R + Qt) 1
. S v N o
+ sin (E-+ 2T R + Qt> {] + wk (A1)

where u, Vv, and w are functions of s and t and 3, 3, and ﬁ are unit
direction vectors parallel to the X-, Y-, and Z-axes, respectively. Given that
u, v, and w are very small, equation (Al) may be written in terms of cylin-
drical coordinates:
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T (s,t) = (R + AR + u)%r + vegt we, (a2)

where the cylindrical coordinate system is defined at the point Q as shown in
figure 39. The velocity and acceleration are written as follows:

Tols,t) = (0 - Q& + [V + QR + B8R + )] &g + W8, (a3)

;'.;C(s,t) [u - 20v - Q2R + AR + u):l ey + E} + 200 - sz:lée + We,
(A4)

where a dot over a variable denotes differentiation with respect to time.

Forces and Moments
A curvilinear coordinate system is developed to aid in deriving the stress

and strain of the deformed ring. Let the vector e; be defined tangent to the
deformed line of centroids of the ring as shown in figure 40. Then,

A~ -I:c' o~ R . A'AWN ' D
e2=—|§—~—ee+m<u -E>r+wez (A5)

where the prime denotes differentiation with respect to s and where |fc'|
has been approximated by

+
R + AR |
R

w e

Let the vector 81 be defined perpendicular to the vector 82 and the vector
obtained by rotating e, about ejp through B, the angle of twist of the
cross section (see fig. 40). Then

~ ~ ~ R ~ ~
e; = ey X (ez + Ber) = e, ~ E—I—Zﬁ(u' - %)ee - Be, (A6)

Let the vector 83 be defined perpendicular to the vectors él and gz so
that the triad (81,§2,83) forms an orthogonal coordinate system:

83 = /él X gZ = 82 + B@r T R+ AR w'ée (a7)
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Equations (A5) through (A7) define vectors which have lengths of unlty
plus terms which are products of the perturbation variables; that is, el, e2,
and e3 are unit vectors to the first order. Since the perturbation variables
are assumed to be small quantities and nonlinear terms are 1gnored throughout
this development of linearized equations, the vectors el, e2, and 83 are
treated as unit direction vectors.

Assume that the cross secEion of the ring is perpendicular to éz and the
principal axes coincide with e; and e3. Let the components of the forces
acting on the cross section of the ring be (Fy,F,,F3) aligned to the (el,ez,e3)
triad. The component F,; is the tensile force in the ring and F; and Fj3
are shear forces. Let any externally applied influences be represented by the
distributed forces (force per distance) W, Wy, and W3 aligned to the
(81,32,83) triad. Given a short segment of the ring of length ds, the sum of
forces acting on the segment is

a ~ ~ ~ A ~
dFr = Bs( le + F2e2 + F3e3) + (Wlel + W2e2 + W3e3ﬂ ds (A8)

Ignoring products of wu, v, w, and f with F;', Fp', and F3' and using
the relations of equations (A5) through (A7) yield an expression for the spatial
derivative of the total force acting on the ring segment in terms of cylindrical
coordinates:

aF 1 R v 1 w v ~
a {Wl +F' - gEar R—TTR[(“' - E)(Wz * R Fl) * (“ } 'R—)Fz] + Bug + B'Fz}er
v l R L) 1 1 " vl 1 n é ~
+ {Wz + F2 + —R— Fl - m[(u - R)(Wl i Fz) + (u - R)Fl + w W3 + W F3:] + R FB}EG

v R v 1" - 1 a
+E»73+F3 * T gR(wiE, ¢ wUE,) - BWy BFl:Iez (A9)

The strain in a fiber of the ring located at xfgl + ng3 relative to
the centroid of the cross section is given by

r.'(Xe,2e,u,v,w,B,AR)
£ Fregr B VW, Py

e(xf,zf) = = -1 (Al0)
rf‘(xf,zf,0,0,0,0,0)

where
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An expression for the distributed strain perpendicular to the ring's cross
section is obtained by substituting equations (A2), (A6), and (A7) into equa-
tion (Al0) and using small-value approximations for the perturbation variables:

AR | u R v! R B
_____+_+ L + —_— . " _— " — —
R RV R+AR(R u>xf (R+ARW rR)ZE
E(Xpr2.) = S S TR ‘ . S s (A1l)
£'7f Xe
L+ g
The stress is assumed to obey Hooke's law:
O(xf,zf) = E E(Xf,zf) . (A12)

where E is the modulus of elasticity of the material. It is assumed that
there is no intrinsic damping in the material of the ring; that is, deformations
are conservative. Such damping would appear in equation (Al2) as an additional
term which could be a function of €. The total tensile force F, 1is obtained
by integrating equation (Al2) over the cross section:

F, = E/ € da (A13)
A

An infinite series expansion of the denominator of equation (aAll) is used, all
moments of the cross section above the second order are discarded, and cross
products of the cross section are ignored to give an expression for Fy:

AR u EIz|AR u R
- - e+ v + — == —_ * + — LI, T
F, EA( + R \Y > N R + R + v B AR(Ru v') (al14)

The second term of equation (Al4) arises from the fact that the ring is curved
and the elastic center does not coincide with the centroid. For very slender
rings, this term may be ignored.

The moments caused by the tensile forces acting on the cross section are
obtained by integrating the cross product of the vector from the centroid to
each fiber with the stress vector of the fiber:

A

Performing this integration, ignoring the moments of the cross section above
the second order, and ignoring cross products of the cross section yield
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M o= Mie, + Mje, (A16)
where
My = EIr(R jzAR W _'%) (a17)
= e e R - ) HE v (a1e)
where I, and I, are the second moments of the cross section about 33

and él, respectively. The second term of equation (Al8) arises from the fact
that the ring is curved and the elastic center does not coincide with the
centroid.

The angle of shear strain caused by twisting of the ring Y can be deter-

mined for any fiber in the ring by computing the angle between the fiber and the
line of centroids (ref. 15):

|ret (xpr2g) X r'(0,0) ]

Y(Xfl Zf) = = (A19)
[rf'(Xf,Zf)| . |rf'(0,0)l
where Ef = Ec + ngl + zf§3. Noting that Ef'(0,0) = fc' and using equa-
tion (A5) yield a simpler form for equation (Al9):
(x e.' + z_ e ') X o
£f-1 £73 2 (A20)

Y(Xpr2Ze) = —
s [Te' (xgr2g) |

Using equations (A2) and (A5) through (A7) and assuming that there is no warping
of the cross section yield an expression for shear strain acting in the ring's
cross section:

_ { 2 2 R . w!
Y(xf,zf) = Xe© + zg R AR(B + o AR) (a21)

Because of warping, this equation is exact only for circular cross sections.

The shearing stress is obtained by multiplying equation (A2l) by the shear-
ing modulus of elasticity G:

T(xgr2g) = G Y(Xg,2g) (A22)
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As above, it is assumed that there is no intrinsic damping in the material of
the ring. Such damping could appear in equation (A22) as an additional term
which would be a function of Y.

The line of action of the shearing stress is perpendicular to the radius
vector from the centroid to the (xf,zf) location. The moment produced by twist-
ing is the product of shearing stress and the radius, integrated over the cross

section:
My = 2 22 1 ) da (A23)
2= Xf Zf Xfr2fg
A

Using equations (A21) and (A22) in equation (A23) yields an expression for the
torsional moment in the ring expressed in terms of the perturbation variables:

R . w'
Mp =GJ RTA—R( TR A AR) (A24)

where J is the torsional constant for the cross section. For rings which have
circular cross sections, J becomes the polar moment of the cross section. For
rings which have noncircular cross sections, J 1is the torsional constant which
accounts for the warping of the cross section. A table of torsional constants

J for typical cross sections is given in reference 10.

The relationships between the internal forces and moments of the ring are
now derived according to the procedure of reference 9. Consider a short seg-
ment of the ring having length ds. Application of Euler's equation to this
segment yields the relationship between the angular rate of change of the seg-
ment and the forces and moments acting upon this segment, which are depicted in
figure 41:

I = M(s + ds) - M(s) + I,'(s) ds X F(s + ds)

fc'(s) ds

ey X W(s) ds (a25)
where
w = (.Ulel + U)2e2 + w3e3
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and I 1is the inertia tensor of the segment relative to the (al,§2,§3) axis

The principal axes of inertia are assumed to coincide with the

system.
The diagonal

(81,§2,33) axes so that the inertia tensor is diagonal in form.

elements of I are

Il = pIr ds (A26)
I3 = pI, ds (A28)

where Ip is the polar moment of the cross section and  1is the mass density

of the material of the ring when it is at rest.

The components of the angular velocity ® consist of the nominal spin
rate §X%k projected onto the (el,e2,§3) triad and the angular rate of change

of the triad with respect to the rotating ring:

wy = =08 + 2+ AR w' (A29)

vy = g b B (#30)

wy = Q - E—figﬁ<a' - %) (A31)
The left side of equation (A25) may be written as

o = 1) g—t@lgl) * I gE(‘*’zé )+ 13 g‘g(w3é3) (A32)

Equations (A5) through (A7) and (A26) through (A31l) are substituted into equa-
tion (A32), the indicated differentiations are performed, and products of the
perturbation variables are dropped to yield a linearized equation for Iw in
terms of the perturbation variables:

50



APPENDIX A

I = {E[r(ﬁR—A——ﬁ oo~ Qé) + (1, - IP)Q(E%‘Q—AE W' o+ é)] e,

5 RQ ., R -y ~

+ l}p<8 + m w) + (Ir - IZ)Q<—_—R_ T AR W QB)]ee
-1, R—ETPT@' - %)ez}p ds (A33)

The first two terms of the right side of equation (A25) may be approxi-
mated by

M(s + ds) - M(s) = gg(mlal + M282 + M_e ) ds (aA34)

Equations (AS) through (A7) are substituted into equation (A34) and the indi-
cated differentiation is performed. Because M; and M, as given by equa-
tions (Al17) and (A24) consist of terms which are proportional to the perturba-
tion variables w and B, and M3 as given by equation (Al8) consists of
terms which are proportional to the perturbation variables u and v, products
of the perturbation variables and the gquantities Mj;, Mp, M;', Mp', and M3'
are dropped for a linearized solution:

M(S + ds) - IT/I(S) ~ {[Ml' —- I_]i.Mz + (B‘ + ﬁw->M3jl/e\r

(A35)

Using the definition of 82 in equation (A5) and ignoring second order
terms in the variable ds, the third term of the right side of equation (A25)
may be written as

r,'(s) ds x F(s + ds) = |r.' (s)IE?3(s) ey ~ Fy(s) 8,3] ds (A36)
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Equations (A5) through (A7) are substituted into equation (A36) and products of
the perturbation variables are dropped to obtain

}C' (s) ds x E(s +.ds) = {[(B_-'-TAE + v' o+ %)F:% _ BLR_A.R. BF;’ gr
T 1 ] V ~
+ [W Fl - (u - E)F:g] ee
R + AR . u R + AR ~
- [(‘—R——— + v' + E)Fl + ’—R‘“ BFJ ez} ds (A37)

Three equations which relate the internal forces and moments with inertia
effects are obtained by substituting equations (A33), (A35), and (A37) into
equation (A25). Since the last term of the right side of equation (A25) is
second order in the variable ds, it is dropped:

R -, . R . :
pIr(ﬁ_i—ZE w' - QB) + p(I, - Ip)Q<E—I—Z§»w + B>

1 1
= L 1 - - '
My R M2t <B TR+ AR >M3

N <R + AR . 'E)FB _R* AR o (a38)

+
R v R R 1

RQ ,> LI
pIp<B R AR Y TPy IZ)Q<R TR Y QB)
= M,.' + = M, + (ﬁ-— R W' Ms + W'F, - [u' - Z)F (A39)
2 1 R R + AR 3 1 R/ 3
R e V —_ ] R. + AR ] _1:1_. — M
o, (i - ) g - (R e s B - B e e

Substituting equations (Al7), (Al8), and (A24) into equations (A38)
through (A40) and using small-value approximations for the perturbation
variables yield the following relations:
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AR
R + AR _ R\ B GJ EI, , _w'__)
R F3__Elr(R+AR><w —R)+<R+AR+ r2 B' + R+ AR
R . - .
+ QIr<m}i w' - QB) + p(IZ - IP)Q<R—1EQE“ w' + B) (p41)
e RQ .' _ —R_ '| B
op(B + i W) 0 - 10 - 08
_ _GIJR g, _ R AR )\ B
_R+ARB E(R+AR r+RIZ)R2
+|—R gy +e(r. « 8B W (A42)
R + AR r R "2/IR + AR
R + AR B R V" 1fu' N , v
R Fq -EIZ|:R " AR( - R ) + R(R + v ):I + pIZ<u R) (A43)
Equations (A4l1l) and (A43) are formulas for the shear forces acting across the

cross section as functions of the perturbation variables.
the relationship between the angle of twist R

deflection w.

Equations

Given a small segment of the ring,
described by

Substitution of equations (A4) and (A9)

partial differential equations:

i

pA[ii - 20% - O2(R + AR + u)] W

BEquation (A42) is
and the out-of-plane

of Motion

its motion obeys Newton's law which is

(a44)

into equation (A44) yields a system of

F
2, _® [(, v
TR TR+ ARI:(u R)WZ

v _— v'
—§>Fl + (u R

)Fz:l + Bw3 + B'F3 (A45)
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) X Fy R v
v - = L V. A . L. '
pA[? + 20u ) é] W, + F, = R T ARl(u R)Wl + w'Wy
" v' 1 v " B
+ (u - ]f)Fl - E(u' - §>F2 +w Fé] + 5 F3 (nd6)

R

- . R
PAW W3 + F3 + R * AR

(w'w2 + w"F2> - BW, - B'F; (347)

Solving the quiescent case of equation (A45) where the externally applied
forces W and the perturbation variables are zero yields an expression for
the equilibrium tension in the ring:

F, = pA(l + A?R>(RS2)2 (248)

The equilibrium strain in the ring is obtained by equating equations (A48)
and (Al4) where the perturbation variables are set to zero:

2
& = AR _ (RS2) S (n49)
R g iz 2
-1 + — - (RQ2)
P AR

Let the externally applied force densities Wir Wy, and W, be small
perturbation quantities. Substitutiqns of equations (Al4), (A4l1), and (A43)
into equations (A45), (A46), and (A47) and using equations (A42) and (A48)
yield a system of partial differential equations of the perturbation variables

for a steadily spinning ring with small external forces. 1In addition, if the
assumptions
AR
= — <
€5 R <1 (A50)
2 BE Ip
(R4 << =11 + ) (A51)
P AR
GJ
<< = A
o ET (a52)
z
I
r
€O << I—' (A53)
z
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are used and we note that Ip2 = Ir2 + Izz, then the resulting system of
equations is

- . 2 ! 20 2,54 2 2

u - 20v - Q%u = on " Ys S, (R*u™ + 2R“u" + u) - w “(Rv' + u)

+ Q2 (R%u" - Rv') + sz2(Rzﬁ" - RV')
. . Wy 2 2 2 2 . .
v + 20u = — + 0w_“(Ru' + R“v") + Q°Ru' + S_“(RU' - V)
PA s z
W = e wg?s, 2 Rfwm - R3B") + w %5 2(R%w" + R3BM) + Q2RZyn
T oA s ®r w r °J w

+ 5, 2R2 (6" - 208" + Q2u")

5,2 (B + Qu') + (s,2 - s.2)R6 - 9B) = w2532 (R%8" + Rru")
20 2 nom
+ w %s_? (Rw B)
where
o = E
R -
QRZ
o = G
L= =
oR?
S = Tz
z ARZ
T
s, = -—%5
AR
s = |-
p NE
J
s, = [
J AR?

(A54)

(A55)

(A56)

(A57)

(A58)

(A59)

(a60)

(A6l)

(A62)

(A63)
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The terms wg and w, may be interpreted to be the speed of longitudinal
and transverse sound waves in the material divided by the ring radius, and Sy
Sy Sp, and Sy are geometric characteristics which are analogous to the

inverse of the slenderness ratio used in the design of columns (ref. 9).

Equations (A54) through (A57) form a system of partial differential equa-
tions which describe the small-perturbation dynamic behavior of a steadily
spinning slender ring which is influenced by small external forces. Equa-
tions (A54) and (AS55) describe the coupled radial and tangential motions for
which the ring remains in its original plane. Equations (A56) and (A57)
describe the coupled out-of-plane deflection and ring twisting motions. The
out-of-plane and the in-plane motions are uncoupled from each other.

Because of the absence of structural damping terms in the stress-strain
relationships of equations (Al2) and (A22), the homogeneous solutions of the
above equations are periodic in time. If damping were considered, the solu-
tions would include exponentially decaying functions. It is expected that any
practical ring would be very lightly damped so that the development of this
paper would apply at least for short-term behavior.
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SOLUTION OF VIBRATION FREQUENCY EQUATION

During the development of the characteristics of the structural dynamics
of the ring performed in the main text, equations defining the vibration fre-
quencies of the structural modes were found to be of the form

f(w) = w? - aw? + bw + ¢ = 0 (B1)

where w is the frequency of vibration; a, b, and ¢ are positive real
values; and b has a small value. If the roots of f(w) = 0 are real, then
the motions of the ring are periodic in time. If any of the roots are complex,
then the structural vibrations of the ring are unstable. This appendix pre-
sents a procedure for calculating the roots of f(w) = 0. A sufficient condi-
tion for the existence of four real roots is also presented.

Conditions on the values of a, b, and ¢ in equation (Bl) are found so
that if these conditions are satisfied, then there are no complex roots of

f(w) = 0. Consider the special case of equation (Bl) where the value of b
is zero:

g{w) = wd - aw? + ¢ (B2)
The roots of g(w) = 0 are easily found to be

w = i\/%(a +\Ja? - 4c) (B3)

These roots are all real and distinct if a2 > 4c.

From equations (Bl) and (B2), the roots of f(w) = 0 satisfy the follow-
ing equation:

g(w) = -bw (B4)

A typical curve for g(w) where a? > 4c is presented in figure 42. The
intersections of g(w) and a straight line passing through the origin with
slope =-b occur at the roots of f(w) = 0. For sufficiently small values of
b, four intersections occur implying the existence of four distinct real roots.
For sufficiently large values of Db, only two intersections occur implying the
existence of two real roots and two complex roots. The line -b.w in fig-

ure 42 has two intersections and is tangent at a third point on the g(w)
curve. In this case, there exists a double real root at the tangent. For

b > bc, there exist complex roots, and for b < bc' there exist only real roots
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of f£(w) = 0. Therefore, the value of bC is the greatest lower bound on the
values of b for which there are complex roots of f(w) = 0.

Consider the line -byw in figure 42 which passes through an extremum
of g(w). The value of bj is given by

2 _
b _a 4c (BS)

L~ Jg;

The value of Dby being less than bC is a lower bound on the values of b

for which there may be complex roots of f(w) = 0. Therefore, if
a? > ac (B6)
and
2
- 4
b £ & 2.5 (B7)

then all roots are real and distinct. If b 1is nonzero and a2 = 4c or if

a? < 4c, then there exist complex roots of equation (Bl). If equation (B6) is
satisfied but equation (B7) is not, then a more detailed analysis is required
to determine whether the roots are all real.

The roots of the quartic polynomial equation f(w) = 0 can be calculated
by algebraic techniques, for example, Ferrari's method (ref. 16). However, a

different procedure is used in the following analysis.

Given that f(w) has four real roots, then it can be factored into the
form

f(w) = (W - wy = wp) (W - wy +wy)(w+ wy - W) (W + wy + wy) (B8)

where wO’ wl, and wz are real numbers.

Multiplying out equation (B8) and equating coefficients with equation (Bl)
yield a set of simultaneous nonlinear equations in Wor Wy and Wyt

2 2 2 _
wl + oW, + 2wo = a (B9)
2(w22 - wl2>wo = b (B10)
2 _ 2 2 2y _
(wo wl )(wo w2 ) = ¢ (B11)
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Solving equation (B9) for w22 and substituting the result into equation (Bl0O)
yield an equation for w12 as a function of wj:

2 b
- Bl

Similarly, solving equation (B9) for wl2 and substituting the result into

equation (B1l0) yield an equation for w22 as a function of Wq

2 4 Zg— (B13)
0

Substitution of equations (B12) and (Bl3) into equation (Bll) yields a poly-
nomial in wq*

2 .
w06 - %wo‘l + <a—£9>wo2 - 0 (B14)

The roots of this equation may be found by application of Tartaglia's method
(ref. 16). 1In this paper only those roots of equation (Bl4) with the smallest
magnitude are considered. Assuming that the magnitudes of these roots are much
smaller than the magnitudes of the remaining roots, an approximate solution may
be obtained by ignoring the first term of equation (Bl4):

wy? = (B15)

(a2 - 4c) + \/(a2 - 4c)? - 8ab?

For more precision, an iterative procedure may be used for solving equa-

tion (B14) by substituting an estimate (or previous solution) for woz for
the first term of the equation and solving as if it were part of the constant
term as follows:

i[192 - 64(w 2)3]
(w02)1+1 = ?' = ( . (B16)
@ - a0 @ - a0® - salb - afun?)]

where the subscript i denotes the ith solution of the iteration and
2 -
(wO )o = 0.

Without loss of generality, only positive values of Wy are considered.
With this condition, examination of equations (B12) and (B13) shows that the
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magnitude of w, is larger than the magnitude of w;. Solving equation (B9)
for w22 and substituting the result into equation (B1l) yield a polynomial

. 2.
in (Ul :

wl4 - (a - 2w02)w12 + [} + w02(a - 3w02i] =0 (B17)

Similarly solving equation (B9) for wl2 and substituting the result into
equation (Bll) yield an identical polynomial in w22. Equations (B12) and (B13)
show that there are only two solutions for ww; and two solutions for ;.

Since Iw2[ > [wll, the two larger roots of equation (B1l7) are values of Wo

and the two smaller roots are values of Wy :

) T ]

Wy T = e T e (B18)

w? = e A e LSRR (819)

From equation (B8), the four roots of f(w) = 0 where f(w) 1is given by
equation (Bl) are w = wg * Wy, -Wy * w, where wy is calculated by the
approximate equation (Bl4) or the iteration equation (B16), w®w, is calculated
by equation (B18), and w; is calculated by equation (B19). All the roots are
real if the conditions of equations (B6) and (B7) are satisfied. However,
there are cases which have all real roots but which violate the condition of
equation (B7).
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TABLE I.- CHARACTERISTICS OF EXAMPLE RING

Symbol

Value

360 m

0.320 cm
0.320 cm?
0.640 cm?
0.538 cm
1.8 g/cm3

280 GPa

110 GPa

Value
1.12 x 1072
1.12 x 1079
1.59 x 1073

1.46 x 1072

12.5 km/sec
7.8 km/sec
34.7 rad/sec

21.7 rad/sec
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Figure 1l.- Torsional mode. 3 = 4.
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Figure 2.- Out-of-plane bending mode. J
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(b) Destabilizing couple, I, > I,.

Figure 3.~ Torsional couples produced in spinning ring. j =

0.
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Figure 4.- Out-of-plane translation. j = O.
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Figure 5.~ Out-of-plane rotation. j
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Figure 6.— Axis inclination. 3j = 1.
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Figure 7.- Gyroscopic precession. j
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Figure 8.- Out-of-plane progressive wave motion for
high spin rate.




(b) £ = W/2ij.

(c) t ="T/w_..

(@)t = 3m/2up;.

O Particles =0

Figure 9.- Out-of-plane regressive wave motion for
high spin rate.
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Figure 10.- Out-of-plane standing wave motion for

high spin rate.
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Compression

Figure 1l1l.- In-plane compression mode.

Figure 12.- In-plane bending mode.

3

3
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J R+ Geedfecg

(c) t = ﬂ/wco. (dy t = 3ﬂ/2wco.

Figure 13.- Radial oscillation. Jj = 0.
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(a) t = o. (b) t = m/2Ww

Ccl-

;O

(c) t =T1T/Ww t = 31T/2u)c1

Ccl-

Figure 14.- In-plane compression mode. £ = 0; j = 1;

Fcl = 0; Weq < 0.
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LY

X
(by t = W/chl.
Y
X
{c) t = ﬂ/wCl.
Figure 15.—- In-plane compression standing wave.

Q=0; j=1; Fep = 0.
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Figure 16.- In-plane translation.
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Figure 17.- In-plane progressive bending mode for low spin rate.
Q<< sg;  J = 2.
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XY
X *Qt
(a) t = 0. (b) t > 0.
Figure 18.- In-plane regressive bending mode for low spin rate.
<< Sywgs  J = 2.
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Figure 19.- In-plane bending standing wave as seen by

a fixed observer for low spin rate. § << S,Wg -
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(c) t = ﬂ/wBZ. (dy t = 2W/wB2.

Figure 20.- In-plane bending standing wave for
low spin rate. I << S,wg; J = 2.
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(a) t = 0. {b) t > 0.
Figure 21.- In-plane progressive bending mode for
high spin rate. S,wg << Q << wg; J = 2.

Y
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Y X X
(a) t = 0. (by t > O.
Figure 22.- In-plane regressive bending mode for
high spin rate. Syg << 0 << wg; j o= 2.
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Figure 23.-~ In-plane bending standing wave as seen by a fixed
observer for high spin rate. S,wg << { << wg.
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Figure 24.- In-plane bending standing wave for high
spin rate. S5, wg << Q << Wgi j = 2.
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Figure 25.- In-plane compression standing wave

as seen by fixed observer.
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Figure 26.- In-plane compression standing wave.

Q<<ws; j = 3.



107
. {107
10—
Q= 1.0 rad/sec
1078
—107
u Wj .

uMd,rad/sec

10-10

_ R } S G
1 10 100 1000

Mode number, j

Figure 27.- Out-of-plane nodal frequencies.
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Figure 28.- Out-of-plane modal frequencies.
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(a) Torsional mode, ratio of out-of-plane deflection
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Figure 29.- Ratios of out-of-plane variables. § = 1 rad/sec.
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Figure 30.- Out-of-plane modal velocities versus mode number.
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Figure 31.- Out—of—plane modal velocities versus spin rate.
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Figure 32.- In-plane nodalvfrequencies.
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Figure 33.- In-plane modal frequencies.
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Figure 34.- Ratio of tangential motion to radial motion. § = 1 rad/sec.
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Figure 35.- In-plane nodal velocities.
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Figure 36.- In-plane modal velocities versus mode number.
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Figure 37.- In-plane modal velocities versus spin rate.
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(a) sStationary ring. (b) Rotating ring.

Figure 38.- Geometry of the ring, plan view.

Figure 39.- Perturbation variables.
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Figure 40.- Curvilinear coordinates.
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Figure 41.- Short ring segment with forces and
moments acting upon it.
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Figure 42.- Quartic polynomial.

97



1. Report No. 2. Government Accession No. 73. Recipient’s éélog No.
NASA TP-1775
4. Title and Subtitle 5. Report Date
VIBRATION CHARACTERISTICS OF A STEADILY December 1980 ]
ROTATING SLENDER RING 6., Performing Organization Code
506-53-63-04
7. Author(s) 8. Performing Organization Repo;t No.
Frederick J. Lallman L-13386 |
10. Work Unit No.
9. Performing Organization Name and Address ‘
NASA Langley Research Center 11. Contract or Grant No. T
Hampton, VA 23665
. . 13. Type of Report anrd”Pe‘rioc:j*C;v;red
12. Sponsoring Agency Name and Address Technical Paper
. . L . o e
Natlénal Aeronautics and Space Administration 14, Sponsaring Agency Code
Washington, DC 20546
15. Supplementary Notes - A i }
16. Abstract
Partial differential equations are derived to describe the structural vibrations
of a uniform homogeneous ring which is very flexible because the radius is very
large compared with the cross-sectional dimensions. Elementary beam theory is
used and small deflections are assumed in the derivation. Four sets of struc-
tural modes are examined: bending and compression modes in the plane of the
ring, bending modes perpendicular to the plane of the ring, and twisting modes
about the centroid of the ring cross section. Spatial and temporal character-
istics of these modes, presented in terms of vibration frequencies and ratios
between vibration amplitudes, are demonstrated in several figures. Given a
sufficiently high rotational rate, the dynamics of the ring approach those of a
vibrating string. In this case, the velocity of traveling waves in the material
of the ring approaches the velocity of the material relative to inertial space,
resulting in structural modes which are almost stationary in space.
17. Key Words (Suggesfed by Authér(;) )‘ o 18. Distribution Statement—k ) -
Structural dynamics Unclassified - Unlimited
Vibrations
Structural mechanics
Spacecraft design
Circular ring Subject Category 39
19. Security Classit. (of this report) 20. Security Classif. (of this page) 21. No. of Pages | 22. Price® T
Unclassified Unclassified 97 A0S

* For sale by the National Technical Information Service, Springfield, Virgima 22161
NASA-Langley, 1980



THIRD-CLASS BULK RATE Postage and Fees Paid

Natjonal Aeronautics and Fostage an el
N . . . ational Aeronautics an
Space Administration Space Administration
. ~ NASA-451
Washington, D.C.
20546
Official Business
Penalty for Private Use, $300

10 1 1u,D, 121980 S00903DS
DEPT OF THE ALR FORCE

AF WEAPONS LABORATORY

ATTN: TECHNICAL LIBRARY (SUL)
KIRTLAND AFB NM 87117

v ' . If Undeliverable (Section 158
WA POSTMASTER: Postal Manual) Do Not Return

' 1T 1T



